# Optimized version of CopiesList.hashCode()

Tagir Valeev amaembo at gmail.com
Fri Nov 30 04:02:41 UTC 2018

```Hello!

If you are doing it fast, why not doing it really fast? If you
deparenthesize and regroup terms, you'll got
h(e, n) = p ^ n + e * f(n)
Where h(e, n) is the hashCode of n elements with hashCode of single
element = e; p = 31 and
f(n) = Sum(p^k, k = 0..n-1)

Using simple algebraic rules, you'll get:
p ^ (2n) = (p^n)^2
f(2n) = f(n) * (p^n + 1)
p ^ (n+1) = (p^n)*p
f(n+1) = f(n) * p + 1

Thus the algorithm may look as follows:

public int hashCode() {
int pow = 1; // -> 31^n
int sum = 0; // -> Sum(31^k, k = 0..n-1)
for (int i = Integer.numberOfLeadingZeros(n); i < Integer.SIZE; i++) {
sum = sum * (pow + 1);
pow *= pow;
if (((n << i) & 0x8000_0000) != 0) {
pow *= 31;
sum = sum * 31 + 1;
}
}
return pow + sum * (element == null ? 0 : element.hashCode());
}

It seems reasonable to peel off the n = 0 case, which helps to reduce
number of multiplications for other cases (also for n = 0 we don't
need to calculate element hashCode at all):

public int hashCode() {
if (n == 0) return 1;
int pow = 31; // -> 31^n
int sum = 1; // -> Sum(31^k, k = 0..n-1)
for (int i = Integer.numberOfLeadingZeros(n) + 1; i < Integer.SIZE; i++) {
sum = sum * (pow + 1);
pow *= pow;
if (((n << i) & 0x8000_0000) != 0) {
pow *= 31;
sum = sum * 31 + 1;
}
}
return pow + sum * (element == null ? 0 : element.hashCode());
}

Assuming that element hashCode is simple (I used String "foo" as an
element), I got the following results for different collection sizes:

Benchmark         (size)         Score        Error  Units
hashCodeFast           0         2,299 ±      0,017  ns/op
hashCodeFast           1         2,731 ±      0,021  ns/op
hashCodeFast           2         4,073 ±      0,077  ns/op
hashCodeFast           3         4,315 ±      0,032  ns/op
hashCodeFast           5         5,470 ±      0,074  ns/op
hashCodeFast          10         6,904 ±      0,060  ns/op
hashCodeFast          30         9,102 ±      0,173  ns/op
hashCodeFast         100        10,093 ±      0,069  ns/op
hashCodeFast        1000        14,129 ±      0,074  ns/op
hashCodeFast       10000        17,028 ±      0,249  ns/op
hashCodeFast      100000        20,795 ±      0,194  ns/op
hashCodeFast     1000000        23,622 ±      0,264  ns/op

Compared to Zheka's implementation:

Benchmark         (size)         Score        Error  Units
hashCodeZheka          0         2,584 ±      0,024  ns/op
hashCodeZheka          1         2,868 ±      0,022  ns/op
hashCodeZheka          2         3,730 ±      0,030  ns/op
hashCodeZheka          3         4,323 ±      0,027  ns/op
hashCodeZheka          5         5,285 ±      0,037  ns/op
hashCodeZheka         10         8,254 ±      0,057  ns/op
hashCodeZheka         30        24,793 ±      0,218  ns/op
hashCodeZheka        100        89,017 ±      0,764  ns/op
hashCodeZheka       1000       923,792 ±     28,194  ns/op
hashCodeZheka      10000      9157,411 ±     98,902  ns/op
hashCodeZheka     100000     91705,599 ±    689,299  ns/op
hashCodeZheka    1000000    919723,545 ±  13092,935  ns/op

So results are quite similar for one-digit counts, but we start
winning from n = 10 and after that logarithmic algorithm really rocks.

I can file an issue and create a webrev, but I still need a sponsor
and review for such change. Martin, can you help with this?

With best regards,
Tagir Valeev.
On Tue, Nov 27, 2018 at 5:49 PM Martin Buchholz <martinrb at google.com> wrote:
>
> I agree!
>
> (but don't have time ...)
>
> On Sun, Nov 25, 2018 at 9:01 PM, Zheka Kozlov <orionllmain at gmail.com> wrote:
>
> > Currently, CopiesList.hashCode() is inherited from AbstractList which:
> >
> >    - calls hashCode() for each element,
> >    - creates a new Iterator every time.
> >
> > However, for Collections.nCopies():
> >
> >    - All elements are the same. So hashCode() can be called only once.
> >    - An Iterator is unnecessary.
> >
> > So, I propose overridding hashCode() implementation for CopiesList:
> >
> > @Override
> > public int hashCode() {
> >     int hashCode = 1;
> >     final int elementHashCode = (element == null) ? 0 : element.hashCode();
> >     for (int i = 0; i < n; i++) {
> >         hashCode = 31*hashCode + elementHashCode;
> >     }
> >     return hashCode;
> > }
> >
> > Benchmark:
> > List<List<String>> list = Collections.nCopies(10_000, new
> > ArrayList<>(Collections.nCopies(1_000_000, "a")));
> > long nano = System.nanoTime();
> > System.out.println(list.hashCode());
> > System.out.println((System.nanoTime() - nano) / 1_000_000);
> >
> > Result:
> > Old version - ~12 seconds.
> > New version - ~10 milliseconds.
> >
```